到钉钉播种AI应用的,不只大模型厂商们

经历了去年的百模大战、今年的大模型价格战,AI 应用尚未能爆发。大模型到底如何落地,成为所有人最关心的焦点。

这是一些先跑出来的 AI 应用。在 C 端,像 Kimi、海螺问问这样的语音助手类 APP,成为打工人的工作搭子、生活搭子;在 B 端,钉钉平台上的客户「捏」出了研、产、供、销、服工作流程的各类 AI 助理,直接交付生产力。
尽管这些 AI 应用尚未迎来破圈,但这批先行者决定聚在一起,在「AI 应用」这个共识上向前一步。
6 月 26 日,「Make 2024 钉钉生态大会」上,6 家大模型厂商加入钉钉生态,包括:MiniMax、月之暗面、猎户星空、百川、智谱和零一万物。
可以看到,这些大模型厂商里,既有以 AGI 为终局做 ToC 应用的选手,也不乏已经在 B 端市场拿下很多订单的「隐形冠军」,他们都做出了一个相同的选择,在钉钉这样一个拥有办公协同和业务数字化最广阔的场景里,探索 AI 应用。他们到底是怎么想的?在中国,AI 应用落地的 roadmap,到底长什么样子?
在这场聚集了国内顶尖大模型厂商和头一批尝试 AI 落地的企业的大会上,我们看到了一些答案。

01

在钉钉,

AI 应用的种子发芽

在钉钉,一批 AI 应用正在自发地涌现。改变的临界点,发生在大模型和业务能产生交集之时,一个闲聊的机器人就变成了一个公司的法务、财务、人力资源、客服等。
AI 知识问答,是落地最快、适用行业最广泛的应用。
在植德律所,AI 知识问答助手正在向律所职员和客户稳定地交付专业服务。
由于行业特点,律师在回答客户提问时必须做到精准无误,哪怕是非自己专业领域的问题。过去遇到这种情况,律师只能先查阅资料、或者向其他律师请教,无法做到及时响应,尤其是综合疑难复杂的问题更需要跨不同人请教。
在看到大语言模型带来语言「生成」的能力后,植德律所曾尝试用大模型类应用来辅助业务,但发现当面临数据专业性、时效性、安全性等方面的问题,这类应用总是无法给予一个准确专业可用的答案。
为解决这一难题,植德将一些律所的语料库,通过钉钉 AI 助理能力打造出了一只学习了内部各种专业知识的 AI 数字人——小植同学。AI 数字人小植同学会根据学习的不同专业领域知识和过往积累的案例,进行专业的回答。当面对客户问到不同领域问题时,律师可以先询问小植同学,生成的回答是基于律所专业的语料,节省出大量人力成本,也带来了客户及时和专业的服务体验。
在对内培训业务与日常工作中,小植也稳定地交付服务。
过去遇到新的业务场景,植德律师在内部往往需要花费大量时间沟通此前的类似项目、工作模板,综合评估项目该由哪位律师、合作人去负责;同样,新人入职后通用能力的培训同样需要消耗大量人力。
现在,「小植同学」通过和律所自身数据结合,充分使用所沉淀的知识库和业务数据,在获得授权后可以通过对话的方式开展数据分析和洞察,比如,招投标业务中,帮助自动分析哪个合伙人做过什么业务,大概是怎样的情况,总结过往的经验和业绩。另一方面,企业内的人事、品宣、财务、行政们的问题,也可以直接问 AI 助理,减少培训成本。
植德律所的职员表示:「小植同学不仅能给我们一个答案,还告诉我原始材料的来源,完全颠覆了以往知识密集型行业做知识管理和信息收集的方式。」
除了知识问答之外,AI 在调取、分析和处理数据方面,也解锁了更多企业新场景,扩大了用数据获取洞察的使用范围,盘活企业数据资产。
金牌橱柜 CIO 陈志永刚接触大模型时,还只是用来查资料并快速输出一些内容,他并不认为大模型会和自己的业务有什么实质交集。直到陈志永开始听说 AI Agent,能实现一些企业场景里的需求,AI 应用的种子开始在这家公司的「老问题」上带来新的方式和效果。
金牌橱柜在全国有四千多家线下门店和经销商,店里的员工包括店主、导购、招商经理、运营人员等各种角色,经常要把消费者提出的问题传递给总部,这些问题关于交付保障、产品报价、订单流转、营销政策、三方运营、线上运营、招商见面、学习培训等场景,繁杂却又刚需。
在过去,金牌橱柜先要安排客服对接,然后派出大量人力解决不同的咨询。有时一个交付保障的问题,可能需要 A、B、C 多个角色都参与进来,不仅客户体验不佳,金牌橱柜的员工们也很累,解决问题的时效和质量有时也难以保障。
在引入 AI 助理后,这种长链条沟通的繁琐、低效被彻底消解了。「我们现在只需要告诉『小金』(AI 助理)什么需求,小金就能输出结果。」在此之前,金牌橱柜有数套垂直的系统,答案分散在不同的系统中,现在通过钉钉 AI PaaS 实现了内部系统的打通,包括 ERP、WMS 等,AI 助理直接能查阅公司内部的数据和知识库,「思考能力和行动力也就更强大」,陈志永说。
这类场景的应用在鞋服零售业也非常普遍。尤其当服装行业向柔性供应链变革,能够获取实时数据、数据洞察成为核心竞争力。
在服装行业,从设计、到生产和零售的各个环节,都会沉淀海量数据。过去,无论是服装零售店店长,还是销售线管理层要获取某个环节的数据时,要精准输入该数据类目的专有关键词才能搜索,甚至需要先向数据开发部的数据分析师提需求,后者写好相应的 SQL 代码,才能查询到相关数据,做数据分析。一串流程下来,一线实时发生的数据洞察早已发生了变化。现在,被安排在各个钉钉群里的 AI 助理,可以随时随地回答大家用自然语言(大白话)提出的各种需求,这是因为它在后台自动完成了写 SQL 代码查数、取数、做数据分析、生成图表和建议的全过程。
这样一来,员工查数、用数、获得洞察的门槛进一步降低,更多角色的业务人员可以更快、更准确地利用 AI 辅助业务做出决策。数据资产的利用率。
AI 助理把企业沉淀的数据盘活利用,是钉钉上 AI 应用的一种重要场景。但这不是唯一的场景,AI 已经逐步进入到问答和数据分析之外的业务领域,比如,有鹿机器人这家公司。

在钉钉的生态大会上,有鹿机器人在钉钉的 AI 助理(即 AI Agent)市场上发布了第一款具身智能助理「有鹿机器人」。
这种合作模式,是由钉钉向企业开放 API 接口,有鹿机器人通过钉钉的接口接入自己的业务系统,然后打造了一款在线管理「机器人员工」的 AI 助理。
它的一个典型应用场景是,当企业客户想要清扫户外垃圾时,只需要从钉钉上的「有鹿机器人」AI 助理下达指令,后台会自动派遣相应的扫地机器人前去打扫,弥补了保洁阿姨人手不足的情况。
像这样 AI 应用的例子还有很多,尽管还没有出现一个人人皆知的 Killer case,但是在企业工作流里,这些 AI 应用改变了软件行业交付生产工具的结果,直接向企业输送生产力,在增加企业收入、提高效率、降低成本上,优先展现出以大模型为主的 AI 所展现的强大力量。

02

到场景中,才有答案

不仅各行各业的客户正在通过钉钉积极尝试拥抱 AI,钉钉的 AI 生态也在不断壮大。一批大模型厂商也来到了钉钉,他们或想在这里寻找 AI 在 B 端落地的场景,或想在场景中进一步优化模型。
在钉钉 2024 生态大会上,包括 Kimi、MiniMax、智谱在内的六家大模型开发商一同亮相。
MiniMax 创始人闫俊杰表示,提高大模型及其产品的渗透率,是钉钉和 MiniMax 一拍即合的原因。「随着模型能力的提升,已经到了可以服务更多中小企业的一个时间点。」
他解释称,两年多以前,AI 的渗透率不到千分之一,现在,随着各种 GPT 的出现,AI 的渗透率已经有了个位数的百分比。未来,随着 AI 越来越通用、出错率和推理成本降低,AI 将有能力服务更长远的需求,使得原来需要高度定制的需求可以利用 AI 能力变得触手可得,未来甚至可以实现百分之几十甚至 100% 的 AI 渗透率。
Kimi 创始人杨植麟则将钉钉视为「当前生产力的最大实验场」。此前,杨植麟公开表示 Kimi 在当前阶段会聚焦在生产力场景,显然,通过与钉钉平台合作,Kimi 可以得到更多用户反馈、快速迭代模型,同时也可以加强 Kimi 对生产力和办公场景的理解与 AI 应用的探索。
事实上,大模型厂商来到钉钉,看中的是后者拥有的国内最庞大的企业级办公生态。如果说大模型厂商是拿着锤子找钉子,那么钉钉则拿着钉子找锤子,大量客户、用户的反馈、问题,正是大模型厂商们发挥各自所长,探索应用的新机会。
根据年初钉钉公布的数据,目前钉钉拥有超过 7 亿用户,覆盖 2500 万各类组织。这些用户和客户在依托钉钉和 PaaS 能力,沉淀了大量数据和场景,这势必会让 AI 应用和模型可以快速试错、迭代、验证。

除了庞大的用户基础和使用场景,钉钉的开放战略是吸引大模型厂商的另一个原因,这次生态大会上,钉钉宣布向所有大模型厂商开放,并以三种模式展开合作与探索。

  • 钉钉一方品+大模型:钉钉的 IM、文档、音视频等产品的 AI 能力主要由通义大模型支持。在此基础上,钉钉将结合其他各家大模型的特点,探索不同模型能力在产品和场景中的应用。例如,钉钉正和月之暗面一起,基于大模型的长文本理解和输出能力,探索教育类应用场景。
  • Agent+大模型:在 AI Agent 开发方面,钉钉已向大模型生态伙伴开放 AI 助理(AI Agent)开发平台。开发者在钉钉上创建 AI 助理时,除了默认的通义大模型外,还可以依据自身需求,选择不同厂商的大模型
  • 定制解决方案:针对客户的个性化场景和需求,钉钉将与大模型厂商一起,为客户定制相应的智能化解决方案,并提供模型训练调优、AI 解决方案打造、AI 定制应用开发等服务,还可实现模型的私有化部署。

这意味这不止率先宣布加入的这六家大模型公司,未来,所有的大模型理论上都可以在钉钉的场景里迭代自己的 AI 应用。这也给了企业用户客观挑选大模型的机会,让他们可以根据自己的也许需要选择最适合的模型。毕竟,模型有自己的「性格」和特长,在具体的场景里,很难说谁是最好、最适合的模型组合,增加模型可选的空间,其实是增加了场景高效落地的可能性。
钉钉总裁叶军表示:「模型开放是钉钉生态开放战略的再进一步。随着行业从模型创新走向应用创新,探索大模型的应用场景是钉钉的责任所在。钉钉拥有大量企业客户,数据优势与场景优势叠加,和大模型之间彼此需要。另一方面,钉钉上的大企业客户也对模型开放提出要求。
其实,生态开放一直是钉钉最重要的战略之一。目前,钉钉生态伙伴总数超过 5600 家;其中 AI 生态伙伴已经超过 100 家,除了 AI 大模型生态伙伴外,还有 AI Agent 产品、AI 解决方案、AI 插件等不同领域的伙伴。钉钉 AI 每天调用量超 1000 万次。
随着模型能力的不断提升,业内也逐步形成共识:真实场景中的大规模应用,是大模型价值验证和通往 AGI 的必由之路。在大模型落地「不是还有最后一公里,而是一百公里」的现状下,钉钉搭建了一个能把场景、模型、工具、用户联合在一起下场「Play」的平台。如果说一个通用的大模型 API 解决不了问题,那么在场景最多、用户最多的协同办公平台钉钉上,钉钉带着用户、场景,和模型方一起下场试验。
各家模型和 AI 工具根据各自的优势,在钉钉研、产、供、销、服的生态场景里匹配需求、探索应用,同时根据用户反馈快速迭代模型。
AI 的落地未必只是一个 Super APP,企业侧各种工作流的刚需场景里,是值得期待的试验田,就像在钉钉,智能化正在带来切实改变——看得见的需求,可感知的价值,有启发的实践。星星之火,未来可期。

相关新闻

联系我们

联系我们

13276019273

邮件:siyushenqi@gmail.com

工作时间:周一至周五,9:30-20:30,节假日休息

添加微信
添加微信
Telegram
分享本页
返回顶部
私域神器:一站式全网全渠道拓客营销软件
备用域名:https://www.siyushenqi.com